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Perturbation theory is used to justify the approximation in configuration interaction of  the 
coefficients of  quadruple excitations as products of  coefficients of double excitations. Corresponding 
energy expressions are presented and tested in a simple application to the beryllium atom. The ideas 
are likely to be of  most use in connection with large configuration interaction calculations. 

Consider a configuration interaction (CI) calculation carried out for a closed 
shell system using an orthonormal set of orbitals a, a', a"... b, b'...n, n'. . . ,  where 
the Slater determinant 

q~ o = [ a -d b -b . . . n-ill (1) 

represents a solution of the Hartree-Fock equations (perhaps best transformed 
to a localized orbital representation) and a ' ,  a" ,  etc. represent a set of excited 
orbitals chosen to allow the pair of electrons in a to correlate, b'... ,  n'... etc. being 
chosen similarily. The dominant terms in such a configuration interaction consist 
of double excitations such as 1 

~b~' = la-db ' -b ' . . ,  n g l  (2) 

corresponding to independent pair correlations. 
However, as has been noted by Sinano~lu and others [1, 2], the coefficient of 

some quadruple excitations are not negligible because of the parts of such terms 
which represent two pairs of electrons correlating independently but simultane- 
ously (unlinked clusters in the language of Sinano~lu). If this is the only significant 
cause of quadruple excitations, the coefficients of such excitations are equal to the 
products of the corresponding double excitations, e.g. the coefficient of 

~b",s b' = l a ' W b ' - 6 ' . . ,  n-ill (3) 

will be the product of the coefficients of ~,"' and ~b'. This has been found to be the 
case for the calculations of Watson [4] on Be and Ebbing [-5] on LiH. 

Since, when the number of electron pairs becomes large, the number of 
quadruple excitation increases as the square of the number of double excitations, 
it is of interest to investigate the possibility of allowing for quadruple excitations 
by estimating their coefficients using the above relationship. The following 
perturbation theory analysis suggests that this might not be an unreasonable 
procedure. 

1 For the sake of simplicity I use a single pair of indices to �9 for the double excitation since single 
excitations are not considered in this note. Thus ~ '  in the present notation corresponds to cb~ ~' in the 
notation of Nesbet [-3]. 
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The CI matrix including the quadruple excitations has the following form 
where K~p represents an exchange integral between orbitals ~ and ft. 

4'o 

qb~" 

~ 'b' 

~o ~" ~,, ... ~ ,  ... ~27, ~2;,~, ... 

E O Kaa '  

Kaa, Ew 

K.d, K~,~,, 

Kbb,  0 
: 

0 Kbb,  

0 0 

K,a, . . . .  K b b  . . . .  0 0 . . .  

Ka,~. . . . .  0 . . .  K b b ,  0 . . .  

E a, . . . .  0 . . .  0 Kbb  . . . .  

0 . . .  E b . . . .  K,,,,, K,,., . . . .  

0 ... K, , ,  . . .  Ea, b, K a ,  a, . . . .  

K b b  . . . .  K.~, . . . .  K~,a,, Ea,, b . . . .  

(4) 

If the off-diagonal part of the matrix is treated as a perturbation, we obtain the 
following expressions for the first and second order corrections to &o- 

K p p ,  

~'('= ~,~'E (Eo-G') o; 

,p(2) = K pp,, K p , ,  p, 

E (eo-Zg2)~,)(~To-E~,,) ~; p,p',p" #: p' 

_ K p p , K q q ,  

+ E (Eo- X~O~- G,~,) p,p',q > p,q' 

Kpp.,Kp,,p, 

E (~o~g2)~,)(T2-o -E~) *; p,p',p" ~ p' 

+ 

K p p , K q q ,  t ' " 
+ ( F ~ o _ ~ o - _ F ~ v )  '~;g 

K p p ,  K q q , ( 2 E  0 - Ep,  - Eq,)  , , 

p,p',q> p,q' 

(5) 

(6) 

The 
quadruple excitations are: 

g p p ,  
I//(1)= E ( E o _ E p , )  ~ ;  

p,p" 

Kpp,,Kp,,p, 

p,p',p'" :/= p' 

corresponding expressions obtained from the truncated matrix without 

(7) 

(8) 

Thus the coefficients of the double excitations obtained from the truncated 
matrix are identical, to second order, with those obtained from the full matrix. 
If these are used to estimate the coefficients of the quadruple excitations the result 
for the quadruple excitation part oI- iI//(2) is 

K p p , K q q ,  , , 
I//(2)" est, = P;P',qE> P,q' (Eo - Ep,) (E o - Eq,) ~ffqq + higher order terms. (9) 
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The coefficients in this expansion differ to second order from those in the correct 
expansion by factors 

2E o - E p , -  Eq, = 1 + 4 (Jpq- t - Jp ,q , - Jpq , - Jp ,q )  - 2 ( K p q q - K p , q , - K p q , - K p , q )  (10) 

E o - Ep,q, E o - -  Ep,q, 

so that the difference represents at least a third order term and the result is correct 
to second order. 

In fact, if a localized orbital basis is used, the numerator of the second term in 
(10) is likely to be small even in comparison with one of the Exchange integrals 
which form the off-diagonal elements of the CI matrix. The Coulomb part of it, 
for example, can be written 

4 Ij ~ [p2(1) - p'2(1)] [1/r12 ] [q2(2)-  q'2(2)3 dz  1 dz  2 

which represents the electrostatic intereaction between charge distributions each 
of zero total charge (and small or zero dipole moment) in different regions of space. 
No such relationship holds in higher orders of perturbation theory; the third 
order coefficients of the double excitations, for example, include matrix elements 
involving the quadruple excitations. 

The second order wave function determines the energy to fifth order, so that 
an appreciable improvement in the energy might be expected if this approximate 
second order wave function is used. The expression for the contribution of 
quadruple excitations to the fourth order energy turns out to be rather simple. 
(There are no contributions in lower orders). 

E ~4)= ~ cP'2aq'K (11) --p -q  ~-qq'  . 
p,p',q ~ p,q' 

The fifth order expression is rather less tidy. 

= Cp Cq Cq Kq ,q , ,  @ (E o -  E p , )  " (12) 
p,p',q ~= p,q',q" ~ q' 

In the trial application of these formulae described below, the contribution of E (5) 
is negligible and it may well not be worth evaluating in many cases. 

It remains to be considered whether the coefficients to be used in Eqs. (11) and 
(12) should be the first order ones (5) or the true ones obtained by diagonalization 
of the truncated C.I. matrix. Since the difference is itself a second order one, there 
is no obvious reason to prefer one to the other, but the trial application suggests 
that use of the true coefficient leads to a more accurate result, presumably because 
at least parts of higher order terms are included. 

The suggested procedure, then, is to diagonalize the C.I. matrix using doubly 
excited configurations only, and to add to the wavefunction so obtained all 
quadruply excited configurations with coefficients equal to the products of those 
of the corresponding doubly excited configurations using the resulting wavefunc- 
tion to evaluate expectation values of any operators of interest. For  the particular 
case of the total energy, the expressions (11) and (12) give the appropriate correc- 
tions to the value obtained using double excitations only. 
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We have, as a simple trial case, applied the expressions to the results of a small  
very l imited C.I. wavefunct ion  obta ined,  for ano ther  purpose,  for the beryl l ium 
a tom [6]. Three opt imized excited orbi tals  2p, 3s and  3p are used and  consequent ly  
only three double  excitat ions 2p ~ s ,  ~ f f  and  ~bla~ are considered. We have carried 
out  the exact calculat ion with and  wi thout  inc lus ion of quadruple  excitations so as 
to compare  the est imate given by the present  me thod  with the exact values. The 
results are given in the table which is self-explanatory. 

The formulae given so far are all derived on  the assumpt ion  that  a given excited 
orbi tal  is only  used in associat ion with a given g round  state orbital. If this restric- 
t ion is relaxed, it is no t  clear whether the second term in (10) would  be small  
compared  with unity. If it is assumed to be, the formulae become of rather  greater 
complexi ty as can be seen in Eqs. (13) and  (14). 

~(2) = Z (C;C; + C~C'q) r + double  exci tat ions.  (13) 
p,q>p,r , s>r  

E(4) = ~ . r2 s ~' ~ ~ (14) to, cq + CpCpC~) K ~ .  
p,q~p,r ,sg:r  

The expression for E (5) is so awkward  as no t  to be wor th  presenting. 

Table. Comparison of estimated and exact effects of quadruple excitations in beryllium 

Exact Using 1st order c~' Using exact c~' 

cl~2 s3~zp -4.07' 10 -3 - 4 . 6 4 "  10 . 3  -3.86' 10 -a 
3p2p Cls2s +4.83" 10 -a +5.42" 10 -a +4.52' 10 -3 

E (4) (a.u.) - -  - 6 . 4 3 "  10 -4  -4.70.10 -4 
E (5)(a.u.) +4.6 - 10 -6 +3.0 �9 10 -6 
Total energy increment (a.u.) - 5.00.10- 4 - 6.38- 10- 4 - 4.67.10- 4 
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